Fetal Abdominal Ultrasound

The Plan

- Show the normal
 - Technique
 - What we SHOULD see

- Introduce the abnormal
 - Abdominal Wall
 - Stomach
 - Masses
 - Renal

Ultrasound technique

What are we checking?
- Is the situs correct?
- Is expected anatomy present?
 - Stomach / Bladder / Kidneys
 - KNOW THE NORMAL
- Is the AC a normal size?

- Abdominal circumference
 - Transverse plane
 - Spine at 3:00 or 9:00
 - Symmetrical ribs
 - Stomach, umbilical vein
 - No kidneys

Part 1

- Stomach
- Cord insert
- Bowel
- Kidneys
- Bladder

Ultrasound technique

- Bladder
 - Is there fluid in the bladder?
 - If not seen, come back to the bladder later on during examination
 - Normal size and shape?

- 3 vessel cord
 - Colour Doppler to show a 3 vessel cord
 - Look out for a 2VC
 - IUGR
 - Congenital and karyotypic abnormalities

Ultrasound technique

- Cord insertion
 - Spine at 3:00 or 9:00
 - Move Superiorly from Bladder or inferiorly from the AC plane
- Cord should insert perpendicular and midline to the abdomen
 - Have fluid on each side of cord insertion
- Look for:
 - Correct cord insertion site
 - Is the abdominal wall intact?
 - Any masses protruding from insertion site
Ultrasound technique

- Kidneys
 - Three plane assessment: transverse, sagittal and coronal
 - Transverse: spine at 12:00 (or 6:00)
 - Right kidney situated slightly lower than left kidney
 - May need to rotate transducer slightly

- Transverse: spine at 12:00 (or 6:00)
 - Right kidney situated slightly lower than left kidney
 - May need to rotate transducer slightly

- Sagittal: From the transverse plane, turn the transducer 90°
 - Pan from left to right
 - Length of kidney approx. equals gestational age
 - e.g. 20/40 fetus should have approx. 20mm length kidneys

- Coronal: Transverse plane with spine at 3:00 or 9:00, then turn the transducer 90°
 - Can apply colour Doppler to check there are 2 renal arteries

Part 2

- Stomach
- Cord insert
- Bowel
- Kidneys
- Bladder

Pathology

Ultrasound technique - Summary

What are you asking yourself?

- Kidneys: present? Normal size and appearance?
 - Correct number and position?
 - Look at their echogenicity
 - Any cysts or masses? If yes, is it unilateral or bilateral
 - Dilation of collecting system?
 - unilateral or bilateral?
 - What level?
 - Can a cause be identified?

- Bladder: is it present? Normal size and appearance?

- Cord insertion: Fluid either side? Masses? Asymmetry?
Pathology

- Survey Abdomen in transverse S-I
- Anatomy (Tick)

Anything else?
- Masses?
- Asymmetry
- Calcifications?
- Dilated or echogenic bowel?
- Ascites?

Pathology: Abdominal Wall

Gastroschisis

- Free floating loops of bowel
- Full thickness defect in the anterior abdominal wall immediately right of the umbilical cord insertion
 - Very rarely on left side
- NOT commonly associated with aneuploidy
- Associated GIT anomalies are common
- Increased risk of PTB and FGR

Pathology: Abdominal Wall

Gastroschisis:

Ultrasound findings:
- Hyperechoic mass attached to abdominal wall immediately right of normal umbilical cord insertion
- No covering membrane
- Thickened, echogenic and nodular bowel wall
- Measure the width of intra- and extra-abdominal bowel loops

Pathology: Abdominal Wall

Omphalocele

- Increased risk of aneuploidy and other non-GIT anomalies
- Membrane covered midline abdominal wall defect with herniation of abdominal contents
- The umbilical cord inserts into this sac
- Membrane rupture is a complication and can mimic gastroschisis
Pathology: Abdominal Wall

Omphalocele
- Must look for another abnormalities
 - Commonly associated with cardiac abnormalities
- **Ultrasound Findings:**
 - Smooth, midline abdominal wall mass with umbilical cord inserting into it
 - Liver and SB are common contents of this mass
 - Herniated bowel generally has normal appearance because it is covered by the membrane and has no contact with amniotic fluid

Pathology: Stomach

- **Small or absent**
 - Absent stomach is very rare
 - Allow time to see if stomach fills with fluid
 - Increases risk of fetal abnormality
- **Dilated fetal stomach**
 - Persistently dilated fetal stomach
 - May be normal or associated with a GI atresia

Pathology: Bowel

- **Echogenic bowel**
 - must be as bright as ossified bone
- **Duodenal atresia**
 - Congenital duodenal obstruction
 - Most common bowel obstruction in fetus
 - Persistent fluid in duodenum
 - “double bubble” sign – fluid filled stomach AND duodenum
 - Echogenic bowel

Pathology: Stomach

- **Midline or right sided stomach**
 - Malpositioned stomach
 - Check fetus’ situs
 - ?heterotaxy ?CDH

- **Esophageal atresia**
 - Incomplete differentiation of respiratory and GI tracts
 - Small stomach, polyhydramnios, IUGR
 - “Pouch sign” – transient filling of esophagus with swallowing
 - Can be part of VACTERL sequence

Pathology: Abdominal Masses

- **Congenital Hepatic haemangiomia**
 - Benign vascular neoplasm occurring in viscera
 - Common in liver
 - Well defined, solid mass, peripheral vascularity
 - Areas of necrosis
- **Mesenchymal hamartoma**
 - Benign liver tumour composed of large cysts surrounded by mesenchymal tissue
 - Multiloculated, cystic liver mass
 - Has thin or thick septations
 - Avascular
Pathology: Abdominal Masses

- **Hepatoblastoma**
 - Most common malignant liver tumour
 - Well defined, solid, echogenic mass
 - Displaces adjacent structures
 - Disorganised vascularity

- Follow up these fetuses with MCA and DV to predict fetal anaemia

Pathology: Renal

- **Ectopic kidney**
 - Abnormal position of kidney/s
 - Pelvis is the most common location
 - Hypoplastic or dysplastic
 - Empty renal fossa → ?ectopic kidney

Pathology: Renal

- **Duplex kidney**
 - Two separate pelvicalyceal systems
 - Complete or partial duplication of ureters
 - UP obstructs and LP refluxes

- **Horseshoe kidney**
 - Fusion of LP of kidneys
 - Difficult to diagnosis antenatally

Pathology: Renal

- **Renal agenesis**
 - Unilateral
 - AFI and bladder may be normal
 - Empty renal fossa (check it is not ectopic)
 - Compensatory hypertrophy of contralateral kidney
 - Isolated → good prognosis

Pathology: Renal

- **Renal agenesis**
 - Bilateral – incompatible with life
 - Failure of ureteric bud and nephrons to develop
 - Severe oligohydramnios
 - Non-visualisation of fetal bladder
 - “lying down” adrenal sign bilaterally
 - Potter syndrome
Pathology: Hydronephrosis

• Measure the transverse renal pelvis diameter
 ▫ T2: >4mm
 ▫ T3: >7mm

Renal cystic disease

Multicystic Dysplastic Kidney (MCDK)

• Most common
• Kidney replaced by cysts of variable size
• No normal renal parenchyma
• Non-functioning
• Most are unilateral
• Ultrasound: multiple cysts seen in kidney
 ▫ Kidney can appear hyperechoic
 ▫ If bilateral, severe oligohydramnios, non-visualization of bladder

Pathology: Hydronephrosis

• PUJ obstruction
 ▫ Most common cause of neonatal hydronephrosis
 ▫ Usually unilateral
 ▫ Ultrasound: dilated renal pelvis +/- calyceal dilation; No ureter or bladder distension

• VUJ obstruction
 ▫ Structural anomaly of distal ureter causing obstruction
 ▫ Ultrasound: dilated ureter +/- dilated renal pelvis

Autosomal Recessive Polycystic Kidney Disease (ARPKD)

• Single gene disorder
• Bilateral, symmetrical, cystic renal disease
• Numerous tiny cysts

Pathology: Hydronephrosis

• PUV
 ▫ Most common cause of lower urinary tract obstruction
 ▫ Males
 ▫ Persistently dilated bladder and proximal ureter, known as “keyhole” sign
 ▫ Trabeculated and thick bladder wall
 ▫ Can cause hydronephrosis

Renal cystic disease

Autosomal Recessive Polycystic Kidney Disease (ARPKD)

• Ultrasound:
 ▫ Hyperechoic and enlarged kidneys
 ▫ Decreased C-M differentiation
 ▫ Can be difficult to diagnose antenatally
Renal cystic disease

Autosomal Dominant Polycystic Kidney Disease (ADPKD)
- Hereditary
- Cysts form in kidneys and liver
- Antenatally, the kidneys may appear normal
- Normal AFI and bladder
- FHx is critical to diagnosing ADPKD

Adrenal Glands

Neuroblastoma
- Most common abdominal malignancy
- Ultrasound appearance:
 - No normal adrenal gland
 - Solid, cystic, or mixed
 - Fetal hydrops can develop

Renal Masses

Mesoblastic Nephroma
- Most common
- Benign hamartoma
- Ultrasound appearance:
 - Solid renal mass
 - Polyhydramnios
 - Iso to hyperechoic compared with renal parenchyma
 - Peripheral and internal vascularity

Wilm’s Tumour
- Rare malignant tumour
- Indistinguishable from mesoblastic nephroma
- Ultrasound: echogenic, solid mass
 - Can replace entire kidney
 - Marked internal vascularity
 - May have cystic spaces

Take Home - Technique

1. Assess in real time
2. Systematic
 - Planes / Mental Checklist
3. Measure carefully
 - Correct Plane / Remeasure

Take Home

1. Have to see Stomach / Bladder!
 - Get Pt to go for a walk / reassess
2. Look for the Normal
3. Look for the Pathology
 - Don’t assume normal