Fetal Heart

Kate Guskich
Senior Sonographer

Image Optimization

- Highest possible frequency transducer
- Optimise
 - Spatial resolution
 - Temporal resolution
 - Contrast resolution
- Fetal heart set-up
- Frame rate
- Tint
- Dynamic Range
- Persistence
- Harmonics
- Cross beam imaging
- Speckle reduction imaging

Image Optimization

- HD Zoom!

Overview

- Image optimization
- Anatomy
- Routine views/scan planes
- Abnormal Appearances
- Pathologies

Image Optimization

- System
- Your scanning

Image Optimization

- Cine-loop
 - Assists real-time evaluation of cardiac structures
 - Confirm movement of heart valve leaflets throughout cardiac cycle.
Image Optimization

BMI

The very active fetus

- Lift abdominal apron (suprapubic)
- Further optimize settings – Machines are getting better and better!
- Cine
- Colour

Next few slides: Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
 - Atrial Chambers
 - Ventricular Chambers
 - Atrioventricular Junction and valves
 - Atrioventricular and Septum
 - Pulmonary Vessels
3. Long axis
 - LVOT / Aortic Valve
4. Short axis
 - RVOT / Pulmonary Valve
5. 3VV
6. 3VTV/Arrow
7. Ao Arch
8. Du Arch

Next few slides: Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch

Next few slides: Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch

Anatomy & Scan Planes

Routine Cardiac Assessment in B-Mode and Colour

Next few slides: Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch

Next few slides: Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch

Next few slides: Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch
Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch

Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch

Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch

Routine B-mode / Colour Cardiac Assessment

1. Situs / size/ rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch
Routine B-mode / Colour Cardiac Assessment

1. Situs / size / rhythm
2. 4-Chamber view
3. LVOT
4. RVOT
5. 3VV
6. 3VTV/Arrow
7. Aortic Arch
8. Ductal Arch

Abnormal Axis & Situs

- 1 risk of cardiac malformation
 - Outflow tracts
- Associations:
 - Chromosomal abnormality
 - CDH
 - Space occupying lesion (CPAM)
- Secondary to:
 - Lung hypoplasia
 - Gastroschisis
 - Omphalocele
- Isomerism
- Dextrocardia

4-chamber View: HD Zoomed assessment

- Symmetry
- Atrial Chambers
 - Septum Primum & Foramen Ovale
- Ventricular Chambers
 - Intra-ventricular septum
- Myocardium/Pericardium
- Atrioventricular junction & valves
- Pulmonary veins

4-chamber View: Situs & general aspects

- Stomach & heart on left
- Heart = 1/3 thoracic area
- Majority in left chest
- Apex to left by 45° ± 20°
- 4 chambers present
- Regular cardiac rhythm
- No pericardial effusion

4-chamber View: Atrial Chambers

HD Zoomed assessment
4-chamber View: Atrial Chambers
- 2 Atria, approx = size
- Foramen ovale flap in left atrium
- Septum Primum present
- Pulmonary veins entering LA

Abnormal Atria
- Size/Symmetry
- ASD
 - Septum secundum defects
 - Septum primum defects
 - Sinus venous ASD (rare)
 - Coronary sinus ASD (rare)
- TAPVR
 - No veins entering the LA

4-chamber View: Ventricles
- 2 ventricles, approx = size
- No ventricular wall hypertrophy
- Moderator band RV apex
- LV rounder apex
- IVS intact
 - apex to crux

Abnormal Ventricles
- Asymmetry
 - Spectrum
 - Mild - Very important for detection of developing lesions
- Cardiomyopathy
- VSD
 - Muscular
 - Perimembranous
 - Infundibular
 - Outlet

4-chamber View:
- **Ventricular Chambers**
 - HD Zoomed assessment
- **AV Junction & Valves**
 - HD Zoomed assessment
4-chamber View: AV Junction & Valves
- Intact cardiac crux
- 2 AV valves open and move freely
- Atrial to ventricular flow
- Offset:
 - TV leaflet closer to apex than MV

Abnormal AV Valves
- Regurgitation
 - Mitral (rare in isolation)
 - Tricuspid (common):
 - AHS: normal
 - Marker for:
 - Ebstein’s
 - Tricuspid Dysplasia
 - Pulm Atresia
- Atresia
 - Thinned
 - Tethered
- Double inlet
- AVSD
 - Highest risk of chromosomal abnormality (46-73%)
 - Poor detection rates antenatally
 - Abnormal alignment of AV valves
 - Complete, Partial, Balanced or Unbalanced

Abnormal LVOT:
- Aortic Stenosis
 - Aortic Valve hypoplasia
 - Not formed or very small
 - HLHS
 - Aortic Valve Dysplasia
 - Thickened
 - Echogenic
 - Incomplete opening
- Alasing
- Regurgitation

LVOT View
- Arising from LV
- Continuous with IVS

RVOT
RVOT View:
- Arising from RV
- Crosses LVOT
- Just below 3VV
- Branch pulmonary arteries
- Pulmonary valve
 - Opening and closing
 - Cine!

3VV/3VTV/Arrow:
- 3VV - Assessment of vessel:
 - Number: 3
 - Size: L to R = biggest to smallest
 - Alignment: L to R = PAS
 - Arrangement: L to R = ant to post

- 3VTV and Arrow
 - More cephalad
 - Level of DA & transverse ao arch
 - Relationship with trachea emphasized

Abnormal RVOT:
- Ebsteins Anomaly
- TOF
- Pulmonary Stenosis
 - Narrow
 - Thickened pulmonary valve
 - Does not disappear in systole
- Pulmonary Atresia
 - Reversed flow through PA
 - TR

Abnormal 3VV/3VTV/Arrow:
- Size / flow discrepancy:
 - Left sided lesions
 - Right sided lesions
- Only 2 vessels seen:
 - TGA
 - Interrupted Aortic Arch
 - truncus arteriosis
- 4 vessels
 - Persistent left SVC
- Spatial
 - Right sided aortic arch

3VV / 3VTV / Arrow

Arches
Aortic and Ductal Arch:

- Sagittal
 - Anterior or Posterior
- Ao Arch more cranial – candy cane
- Du Arch – hockey stick

Abnormal Aortic Arch:

- Aortic Coarctation
 - Lowest prenatal diagnosis rate of any CHD
 - 40% isolated
 - 60% additional cardiac abnormalities
 - Associated with
 - Turner Syndrome
 - Di George Syndrome (22q.11 deletion) (Buyens et al. 2012)
- Interrupted Ao Arch
- Truncus Arteriosis
- Conotruncal lesions
- Parallel arches (TGA)

Abnormal Ductal Arch:

- Rt sided lesions
 - Ebstein
 - TOF
 - Pulmonary stenosis/atresia
 - Small Ductus
 - Low forward flow
 - Reverse flow

Cardiac Cases:

Case 1

TGA

- Transposition of the Great Arteries

- 5-7% of all CHD
- ¼ to 1/3 missed diagnosis antenatally
- D-Transposition most common:
 - Concordant atrial – ventricular connections
 - Discordant ventricular – arterial connections
- L-Transposition rare
 - Discordant atrial – ventricular connections
 - LV on the Rt and RV on the Lt
TGA: 4-chamber
- Usually normal 4 chamber view
 - Except if associated with VSD
 - 50%
 - Usually perimembranous

TGA: Outflow Tracts
- Outflow tracts NOT crossing
 - Parallel outflow tracts and arches
 - Usually Ao is to the Rt and anterior of PA
 - Pulm branches arising from LVOT

TGA: Arches
- Parallel

TGA: 3VV / Arrow
- Abnormal 3VV
 - 2 vessels instead of 3
 - Transverse arch & SVC
 - No arrow

Case 2:
TOF
- Tetralogy of Fallot

TOF
- Most common form of cyanotic heart disease
- Associations:
 - Trisomies 13, 18 and 21
 - 22q.11 deletion (up to 34%)
 - Extracardiac pathology
- Anterior / leftward deviation of outlet septum
 - Impingement of flow through pulmonary outflow tract
 - Over-riding Ao
 - Hypoplastic PA
 - VSD (subaortic)
TOF: 4-chamber view

- Often appears normal (~95%)
- Leftward cardiac axis may be present

TOF: RVOT / Pulmonary Outflow

- Thickened dysplastic Pulm. valve
- Hypoplastic MPA and branch PA
 - Progressive
 - Assoc. with progressive pulmonary outflow tract obstruction
- Pulmonary stenosis
 - Turbulent, reversed or absent flow
- Severity of outflow obstruction determines outcome
 - Patent
 - Direction of flow (MPA & DA)
 - Critical for planning postnatal management
 - Reversed flow (DA) – severe pulmonary outflow obstruction

TOF: VSD

- Sweep towards outflow tracts
- VSD & overriding Ao

TOF: LVOT View / Over-riding Aorta

- May be enlarged
 - Late in gestation
- More anterior than in normal heart
- “Y” view (flow into the aorta from both ventricles)

3 types TOF

1. Pulmonary Stenosis (75%)
 - Most common
 - Narrow
 - Thickened pulmonary valve

2. Pulmonary Atresia (20%)
 - More severe variant
 - Large subaortic VSD & one great artery
 - Reversed flow through PA
 - Hypoplastic branch PA’s
 - TR

3. Absent Pulmonary Valve Syndrome (5%)
 - Large MPA and branch PA’s
 - Significant regurgitation

TOF: 3VV/Arrow view

- Pulmonary Hypoplasia
- Reversed flow in DA
Case 3:

HLHS

- Hypoplastic Left Heart Syndrome

- Associated with:
 - Turner Syndrome
 - Trisomy 13 and 18

- Progressive lesion
 - Aortic stenosis (mild – mod – severe)
 - Mitral / Aortic Atresia
 - Hypertrophic LV
 - Mitral Insufficiency
 - Progressively hypoplastic LV

- The term HLHS = severely hypoplastic LV

HLHS Ultrasound Findings:

- Severely hypoplastic LV
- Threadlike LVOT & ascending aorta
- Distal arch larger, more normal diameter
- Retrograde flow in distal aortic arch
- Left to right atrial flow

Case 4:

RAA

- Right sided Aortic Arch
- Associated cardiac
- Isolated
- Vascular ring
Case 5:
HLHS
- Hypoplastic Left Heart Syndrome

Case 6:
VSD
Aortic Coarctation

Case 7:
HRHS
- Hypoplastic Right Heart Syndrome
- Pulmonary Atresia

Case 8:
New position – Apex up
AVSD
- Atrial-Ventricular Septal Defect
- Absent Offset Cross
- Can be missed
 - positional
 - Common
 - T21

Case 9:
Case 9:
- Look behind the heart
- Interrupted IVC

Case 10:
DORV
- Double Outlet Right Ventricle

Case 11:
TR
- Normal
- Marker for:
 - Ebsteins
 - Pulm Aresia
 - Cardiomegaly

Case 12:
Ebsteins
- TR
- Dilated RA [due to TR]
- Thickened TV
- Displaced TV / greater offset of AV valves
- RVOT obstruction 20%
- Reversed ductal flow in severe forms
- Cardiomegaly (severe forms)
- High mortality (severe TR impacts function of LV as well as RV, therefore poor outcomes).

Case 13:
- Muscular VSD

4 types of VSD
1. Muscular
2. Perimembranous (into LVOT)
3. Inlet (near AV valves and can be assoc. with AVSD)
4. Outlet (prenatal diagnosis prenatally)
Case 15

TAPVR
- Total Anomalous Pulmonary Venous Return

4-chamber View: Normal Pulmonary Veins
- Proximity to the pulmonary arteries can cause confusion
- Check direction of flow on colour

4-chamber View: Normal Pulmonary Veins
- 4 veins (2 Rt 2 Lt)
 - Visualise 1 from each side
- Posterior Left atrium
- Low flow
 - Scale <25cm/s

TAPVR
- No PV’s to LA
 - PV’s to systemic veins or directly to RA
- 5th most common cause of critical heart disease (Ganesan, 2014)
- One of the most common cardiac disease missed prenatally (Laux et al 2013)
- Varying range of cyanosis at birth
 - Depends on amount of deoxygenated blood reaching the circulatory system
- May be life threatening
 - Right to left atrial shunt required for survival
- Isolated or associated with other CHD
- Associated Syndromes:
 - Turner syndrome, Noonan syndrome, heterotaxy (asplenia and polysplenia syndromes)

Ultrasound Appearances: TAPVR
- Pulmonary veins not entering LA
- Smooth posterior LA surface
- Asymmetrical ventricles
 - RV/L
 - May not be apparent until 3rd trimester
- Abnormally wide space between the LA and the descending aorta
- Abnormal vein behind the heart “Twig Sign” (posterior venous confluence)
- TAPVR can be excluded when at least 1 PV is seen entering the LA (PAPVR not excluded)
Ultrasound Appearances: TAPVR

- Pulmonary veins not entering LA
- Smooth posterior LA surface

Conclusion

Enjoy! 😊